
Configuring Concurrent Computation
of Phylogenetic Partial Likelihoods: Accelerating

Analyses Using the BEAGLE Library

Daniel L. Ayres(B) and Michael P. Cummings(B)

Center for Bioinformatics and Computational Biology,
University of Maryland, College Park, MD 20742, USA

{ayres,mike}@umiacs.umd.edu

Abstract. We describe our approach in augmenting the beagle library
for high-performance statistical phylogenetic inference to support con-
current computation of independent partial likelihoods arrays. Our solu-
tion involves identifying independent likelihood estimates in analyses
of partitioned datasets and in proposed tree topologies, and configur-
ing concurrent computation of these likelihoods via cuda and opencl
frameworks. We evaluate the effect of each increase in concurrency on
throughput performance for our partial likelihoods kernel for a four-state
nucleotide substitution model on a variety of parallel computing hard-
ware, such as nvidia and amd gpus, and Intel multicore cpus, observ-
ing up to 16-fold speedups over our previous implementation. Finally,
we evaluate the effect of these gains on an domain application program,
mrbayes. For a partitioned nucleotide-model analysis we observe an aver-
age speedup for the overall run time of 2.1-fold over our previous parallel
implementation, and 10-fold over the native mrbayes with sse.

Keywords: Bayes methods · Biology computing · Evolution (biology) ·
Phylogeny · Maximum likelihood estimation · Multicore processing ·
Parallel programming · High performance computing

1 Introduction

The most effective methods for inferring phylogenetic trees are based on either
maximum likelihood estimation or Bayesian analysis, which share the same com-
putational bottleneck: calculation of the likelihood of trees [7]. When profiling
garli [11], a leading phylogenetic inference program, we have observed that, for
nucleotide models, likelihood related calculations typically constitute over 94%
of the overall run time. For more complex models (e.g., amino-acid or codon-
based), likelihood calculation will typically incur an even greater proportion of
the analysis time. Speeding the calculation of the likelihood function is key to
increasing the performance of statistical inference-based phylogenetic analyses.

The core likelihood calculations apply to a subtree comprising a parent node,
k, two child nodes, � and m, and connecting branches of length, t� and tm, and
c© Springer International Publishing AG 2017
S. Ibrahim et al. (Eds.): ICA3PP 2017, LNCS 10393, pp. 533–547, 2017.
DOI: 10.1007/978-3-319-65482-9 39



534 D.L. Ayres and M.P. Cummings

is repeated for all such subtrees within the larger tree being considered. This
partial likelihood function is as follows [7]:

L
(i)
k (z) =

(∑
x

Pr(x|z, t�)L
(i)
� (x)

)
×

(∑
y

Pr(y|z, tm)L(i)
m (y)

)
(1)

This calculation is repeated for each character i in the data (i.e., sequence site
pattern), for each state z that a character can assume, and for each internal node
in the proposed tree. The computational complexity of the likelihood calculation
for a given tree is O(p × s2 × n), where p is the number of patterns in the
sequence (typically on the order of 102 to 106), s is the number of states each
character in the sequence can assume (typically 4 for a nucleotide model, 20
for an amino-acid model, or 61 for a codon model), and n is the number of
operational taxonomic units (e.g., species, alleles). Additionally the tree search
space is very large; the number of unrooted topologies possible for n operational
taxonomic units is given by the double factorial function (2n − 5)!! [6]. Thus, to
explore even a fraction of the total search space, a very large number of topologies
are evaluated, and hence a very great number of likelihood calculations have to
be performed. This leads to analyses that can take days, weeks or even months
to run. Further compounding the issue, rapid advances in the collection of dna
sequence data have made the limitation for biological understanding of these
data an increasingly computational problem.

1.1 The BEAGLE Library and API

The beagle library and api [2] is a high-performance likelihood-calculation
platform for evolutionary models. It defines a uniform application programming
interface (api) and includes a collection of efficient implementations for calcu-
lating a variety of likelihood-based models on different hardware devices, such as
graphics processing units (gpus) and multicore central processing units (cpus).

The beagle library was designed to support a variety of hardware-specific
implementations, each optimized for a different processor type. The library
includes a set of parallel computing implementations that use the cuda and
opencl external computing frameworks.

The beagle library has been very successful in accelerating evolutionary
analyses. The library has been integrated into the most recent versions of popular
phylogenetics software including beast [5], mrbayes [10], and phyml [8], and has
been widely used across a diverse range of evolutionary studies.

Previously, given the fine-scale parallelization of the phylogenetic likelihood
function in the beagle library, the problem with few sequence patterns, or
one broken into small data subsets, was always small, and thus generally not
amenable to speedups, as patterns (for a given model type and category rate
count, e.g., nucleotide with four distinct rates) were the only dimension being
parallelized.

In this paper we describe our recent work to configure concurrent computa-
tion of phylogenetic likelihoods by exploiting additional independent calculation



Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 535

opportunities. The result is that a wider variety of analyses benefit from parallel
computing performance gains.

1.2 Concurrent Computation: Independent Likelihood Estimates

We have focused on the following opportunities for concurrent computation of
phylogenetic likelihoods that were previously unrealized in beagle.

Pattern Partitions. Evolutionary analyses benefit from increases in modeling
flexibility. One clear way of improving model flexibility is to allow independent
estimation of model parameters for different character data subsets (e.g., genes,
codon positions). This is typically referred to as a partitioned model and is a
technique available in all phylogenetic software packages that support beagle.
Until now partitioned analyses with beagle have required the client program to
create multiple instances of the library, one for each data subset defined by the
partitioning scheme. When beagle instances share a hardware resource they
are executed in sequence, thus incurring significant performance and memory
inefficiencies, specially for problems with a large number of small data subsets.

Independent Subtrees. The number of subtrees requiring calculation for any
full tree is n − 1, where n is the number of operational taxonomic units (e.g.,
species, alleles), which is the number of tips (leaves) on the tree. Phylogenetic
algorithms typically use a post-order traversal when calculating tree likelihood,
calculating each of the n−1 subtrees in series. In the case of a fully pectinate tree
no subtrees are independent (Fig. 1, left). However, in the case of more balanced
topologies there are independent subtrees (Fig. 1, middle). The likelihoods for
sets of these independent subtrees can be calculated concurrently. In order to
more easily realize potential concurrency related to independent subtrees present
in a given topology, partial likelihood arrays need to be processed according to a
reverse level-order, or breadth-first, traversal of the tree being evaluated. In the
case of a fully balanced tree the number of independent subtrees is maximized,
and partial likelihood calculations can be done in sets of concurrent operations
corresponding to the number of levels in the tree, �log2 n� (Fig. 1, right). This
exploit of tree level-group concurrency is somewhat similar to a classic parallel
reduction scheme.

7
6

5
4

3
2

1

7

3

1 2

6

4 5

3

2

1 1

2

1 1

Fig. 1. Example pectinate tree (left), and example of a fully balanced tree (middle);
with sequential calculation both trees require n − 1 = 7 partial likelihood operations
in series, corresponding to the order of the node numbers. Balanced tree (right) with
concurrent computation requiring �log2 n� = 3 sets of independent partial likelihood
operations in the order of the shared node numbers.



536 D.L. Ayres and M.P. Cummings

2 Methods

2.1 Benchmarking and Testing

Our approach to increase concurrency in beagle has been focused on the partial
likelihoods kernel that is the computational bottleneck for phylogenetic analy-
ses. To evaluate the performance of this function we used our test program
(genomictest), which generates random synthetic datasets of arbitrary sizes.
This test program is included with the beagle source code and the results
shown throughout this paper can be reproduced by using the default random
seed, 1.

Table 1. System specifications

System 1 System 2

cpu(s) Intel Core i7-930 Dual Intel Xeon E5-2680v4

gpu(s) amd Radeon R9 Nano amd FirePro S9170

nvidia Quadro P5000

Linux kernel 4.8.13 3.10.0

gcc version 6.2.1 6.2.0

cuda release 8.0 —

opencl drivers amd 1912.5 amd 1800.8

nvidia 375.26 Intel 1.2.0

We report a measure of throughput in terms of the effective number of floating
point operations per second (gflops) for computation of the partial likelihoods
function (see Eq. 1). In contrast to a direct timing benchmark, throughput allows
us to more easily compare performance across different problem sizes. We report
benchmark results for two system configurations (Table 1). For conciseness, many
results are shown only for the two best performing platforms we had available,
the nvidia Quadro P5000 gpu under cuda and the amd Radeon R9 Nano gpu
under opencl. Further comparisons across hardware platforms and frameworks
are reported elsewhere [1].

2.2 Pattern Partition Concurrency

Multiple versus Single Library Instances. An initial design goal for the
beagle library was to make a library instance relatively light-weight, and to
leave it up to the client program to manage these instances. This design objective
was fitting for processors at the time, because it was easier to achieve good
saturation as the number of cores and supported threads for cpus and gpus
were modest compared to recent processors. However, we have found that this
light-weight model is limited, as the client program does not have direct access to



Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 537

the parallel devices and cannot configure concurrent communication efficiently.
Furthermore, this model of separate instances also limits us to the concurrency
afforded to asynchronous kernel executions by the parallel computing framework
used (i.e., cuda or opencl).

Given our desire to improve concurrency for partitioned analyses, our first
decision was to move away from one library instance per data subset. This gave
us greater potential for concurrency, such as via single kernel launches, and more
control over how computation is combined into concurrent executions. Using a
single library instance also results in significant memory savings given many
overhead costs become shared for all partitions.

API Changes. In order to support partitioning in a single library instance we
have modified the beagle api to support data subset assignment and per-subset
operations. Partition assignment can be done via a pattern-count length array of
integers, with support for noncontiguous assignments. These changes were done
as additions to the existing beagle v1 api, and the interface remains backwards
compatible.

CUDA First. Our work to increase concurrency, and thus efficiency, for par-
titioned analyses initially focused on our parallel implementation for the cuda
framework. We have found this framework to be generally more mature than
opencl, and to support more features. We identified two solutions to allow
independent data subsets to be concurrently computed: (a) using cuda streams,
which would allow separate likelihood kernel launches to run concurrently; and
(b) developing a multi-operation likelihood kernel, which would compute mul-
tiple likelihood arrays within a single kernel launch. Below we describe each
approach.

Streams. This feature of the cuda framework is described by nvidia as follows:

“The cuda programming model provides streams as a mechanism for pro-
grams to indicate dependence and independence among kernel launches.
Kernels launched into the same stream are guaranteed to execute con-
secutively, while kernels launched into different streams are permitted to
execute concurrently. Streams describe independence between work items
and hence allow potentially greater efficiency through concurrency.”

To achieve partition concurrency we launch our likelihood kernels on separate
streams according to the data subset of the likelihood array operation. We do so
in a breadth-first manner, that is, the kernel launch for the first partial likelihood
array operation for data subset 1 is followed by the launch for the first operation
for subset 2, and so on. This is to compensate for signal delay in each stream.
We use this multi-stream approach for both partial likelihood and likelihood
integration kernels. For all other kernel launches in beagle we use the null
stream which synchronizes with all streams.



538 D.L. Ayres and M.P. Cummings

Multi-operation Kernel. Our second solution for data subset concurrency
involved modifying our partial likelihood cuda kernel to compute multiple like-
lihood arrays in a single execution launch. We used pointer arithmetic to allow
different input and output arrays for different execution blocks.

Figure 2 contrasts available data arrays (nodes, branches) and likelihood
array index (pattern) for our single and multi-operation partial likelihood ker-
nels. The first implementation is restricted to a single set of input likelihood
arrays (for nodes c1 and c2), input branch length arrays (t1 and t2), and output
array (d0), for all execution blocks. Additionally the pattern computed by each
execution thread is directly determined by block index n, block size blockSize,
and thread index threadId.

Fig. 2. Organization of data arrays and indexing for single and multi-operation kernel
execution blocks for partial likelihoods computation in beagle.

With the multi-operation approach, input and output arrays are determined
based on the block index. Further, the pattern computed by each thread is only
indirectly determined by n, which allows padding of data subsets when these do
not fall along block-sized boundaries.

Additionally, to maximize device global memory throughput we rearrange
site patterns on device memory so that data subsets are contiguous. This is
done when sequence partition assignment is made by the client program and
enables each execution block to operate on a single data subset more efficiently.

2.3 Independent Subtree Concurrency

As we developed the above approaches to partition concurrency, we noted
we could also leverage those methods to concurrently compute partial likeli-
hood arrays for independent subtrees. This would be specially beneficial for
large trees with short sequences when running on manycore processors such as
gpus. This combination of problem size and hardware resource previously left
many processing cores underutilized. Below we describe implementation details
for independent subtree operations via both our streams and multi-operation
solutions.



Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 539

Algorithm 1. Streams and partial likelihood array operations
Data: a sequence of likelihood operations in reverse level-order traversal
Result: computation of partial likelihood arrays in concurrent streams

streamIndex ← 0
foreach operation in the operations sequence do

node ← operation.parent
if node.child1.streamIndex is not null then

node.streamIndex ← node.child1.streamIndex
node.waitIndex ← node.child2.streamIndex

else if node.child2.streamIndex is not null then
node.streamIndex ← node.child2.streamIndex
node.waitIndex ← node.child1.streamIndex

else
node.streamIndex ← streamIndex + 1
streamIndex ← streamIndex + 1

end

if node.waitIndex is not null then
cudaStreamWaitEvent(event node.waitIndex, stream node.streamIndex)

end
cudaLaunchKernel(kernel pLikelihoods, stream node.streamIndex)
cudaEventRecord(event node.streamIndex, stream node.streamIndex)

end

Streams. We further leveraged the use of cuda streams to concurrently com-
pute partial likelihood arrays of independent subtrees by assigning them as
described by Algorithm 1. This algorithm shows how we assign a likelihood
array kernel launch (pLikelihoods) to a stream based on an inherited index
from either of the child nodes (child1 or child2). Additionally, we may wait on
a cuda event that has been recorded for the other child node before launching
the kernel.

Multi-operation Kernel. To implement subtree concurrency with this kernel,
we process partial likelihood subtree operations according to a reverse level-order
traversal of the proposed tree. We add each consecutive operation to a set until
we find an operation that is dependent on the result of a previous operation in the
set. We then start a new operation set, repeating the same process. Once we have
processed all operations in this manner, we successively launch each operation set
for concurrent computation using our multi-operation partial likelihoods kernel.

2.4 Extending Concurrency Gains to OpenCL

Our next step was to extend the above work, using the cuda framework, to our
opencl implementation.



540 D.L. Ayres and M.P. Cummings

Queues. The opencl equivalent to cuda streams are concurrent execution
queues. We implemented our approach in an analogous manner but found the
use of concurrent queues only offered at best minimal gains in performance for
the opencl devices we had access to (amd Radeon R9 Nano and FirePro S9170
gpus, and Intel Xeon E5-2680v4 cpu).

Multi-operation Kernel. For this approach, in a comparable manner to cuda
blocks, we launch opencl work-groups such that multiple partial likelihood oper-
ations can be performed concurrently. In contrast to cuda, we found that the
opencl solution was generally more performance sensitive to implementation
details such as operation order and synchronization points. This was ultimately
beneficial, as we iteratively refined of our likelihood kernel to optimize perfor-
mance, and could then translate back some of the gains to the cuda solution.

2.5 Memory Transfer Optimizations

For the multi-operation approach under either cuda or opencl, we necessitate
an explicit memory transfer from host to device for each tree likelihood estima-
tion. Such memory transfers can be costly for gpu devices as they may have to
go over the pci bus. beagle was designed to minimize this type of transfer and
previously explicit host to device transfers only occurred at the initialization
phase of an inference run.

This additional memory transfer for our multi-operation kernel is used to copy
the address offsets for the input and output arrays each block in device memory
will operate on. In order to minimize costs for this additional memory transfer,
we process all subtree operations in a partial likelihoods call to the library, and
perform a single transfer for multiple launches of our multi-operation kernel.

Table 2. gpu memory transfer optimizations; throughput in gflops

Framework gpu Solution tree a tree b

cuda nvidia p5000 write 328.27 188.76

pinned 328.57 203.47

opencl nvidia p5000 write 320.10 183.78

map/unmap 321.24 199.58

amd r9 nano write 397.92 178.04

map/unmap 403.72 210.30

Further, we use faster methods than we had done before for host to device
transfer: pinned host memory allocations under cuda; and map and unmap
approach with opencl. Table 2 shows kernel throughput performance with these
approaches when compared to the performance when using the regular memory
write transfer method under each framework. This comparison was done for two



Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 541

tree sizes: tree a has 16 tips and 100,032 sequence patterns; and tree b has 256
tips and 1024 patterns. We observe that the pinned and map/unmap approaches
have a positive impact on overall throughput, especially for tree b, which has
many more tips, and thus more partial likelihood operations with an ensuing
larger data transfer size.

2.6 Combining Pattern Partition and Independent Subtree
Concurrency

We have found that the most efficient approach (i.e., stream/queues, or multi-
operation) to concurrent partial likelihood array operations depends on the num-
ber of patterns being processed per operation. In order to determine which app-
roach to use for different problem sizes, we have benchmarked the throughput
for our partial likelihood kernel when evaluating a tree with 16 tips and 100,032
patterns for an increasing number of equal-sized data subsets (Table 3) across our
different parallel solutions. The cuda implementation was tested on an nvidia
Quadro P5000 gpu, the opencl-gpu implementation on an amd Radeon R9
Nano, and the opencl-x86 implementation on dual Intel Xeon E5-2680v4 cpus.
Systems were as specified in Table 1.

Table 3. Concurrency solutions and partition sizes; throughput in gflops with bold
text indicating which concurrency approach within a parallel solution offers best per-
formance at each problem size.

Partition cuda opencl–gpu opencl–x86

count size streams multi-op queues multi-op queues multi-op

1 100,032 321.82 272.61 346.26 335.62 79.97 79.43

2 50,016 330.08 228.21 354.79 341.02 79.85 77.85

16 6,252 316.72 225.64 226.77 330.68 70.60 76.10

24 4,168 227.63 223.40 182.71 318.97 65.92 75.21

32 3,126 164.06 217.59 141.50 317.28 54.65 73.00

64 1,563 87.75 212.71 87.98 326.49 24.92 73.61

With the cuda implementation, we observe that for larger numbers of pat-
terns (above 4,168) the Quadro p5000 gpu is near saturation, and the one-time
overhead of the multi-operation approach makes it relatively inefficient (Table 3).
However, for smaller problem sizes there is less work per stream, and the over-
head cost for each stream makes that approach the less efficient alternative. For
the opencl implementations we observe that the multi-operation approach is
the most efficient or close to most efficient for any partitioned problem.

Based on these findings, and on further intermediate analyses not shown
in Table 3, we set a fixed crossover point for each solution which determines
which approach is used. For the cuda implementation we have set this at 4,168



542 D.L. Ayres and M.P. Cummings

patterns, for the opencl-gpu it is set at 8,192 patterns, and for the opencl-
x86 implementation the multi-operation approach is always used. Additionally,
client programs can also explicitly request either the streams or multi-operation
implementation via the library api.

2.7 Other Aspects

Although beagle supports inferences with models of arbitrary state counts, the
work described here has thus far only been implemented for nucleotide model
inferences.

It is also worth mentioning that our implementation allows partitions to
be reassigned at any point. With each new partition assignment we rearrange
patterns in device memory to maintain efficient throughput. This functionality
may be used by client programs in the future to enable efficient inference of
partition assignments in conjunction with currently inferred parameters.

Finally, we use the --default-stream per-thread nvidia cuda compiler
(nvcc) option so that each beagle instance runs on a separate default stream.
This allows further concurrency gains for other independent work in addition to
partitioning, such as Metropolis-coupled, Markov chain Monte Carlo chains or
run replicates.

2.8 Modifications to MrBayes

In order to fully evaluate the efficacy of the concurrency improvements to the
library, we have adapted mrbayes version 3.2.6 to use the new beagle api parti-
tioning extensions. This enabled mrbayes to use a single beagle library instance
for computing the likelihood of multiple data subsets. This modified version of
mrbbayes is open-source under gpl version 3.0, and is available at https://
github.com/ayresdl/mrbayes-beagle3.

2.9 Library Availability

The beagle project is open source under the gpl v3.0 license. The work
described here will be part of an upcoming release, and is available under a
development branch of the library located at https://github.com/beagle-dev/
beagle-lib/tree/kernel-concurrency.

3 Results

Here we explore the performance effect of the concurrency gains on various
parallel hardware resources. System specifications are as shown in Table 1.

https://github.com/ayresdl/mrbayes-beagle3
https://github.com/ayresdl/mrbayes-beagle3
https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency
https://github.com/beagle-dev/beagle-lib/tree/kernel-concurrency


Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 543

3.1 Pattern Partition Concurrency Gains

We observe that for both the Quadro P5000 and Radeon R9 Nano gpus the
previous approach of sequential computation of data subsets produces a sharp
drop-off in throughput as we increase the number of subsets (Fig. 3). This is
because as we increase the partition count the data subsets have decreasing
numbers of patterns, resulting in increasingly underutilized gpu capacity.

Fig. 3. Plots showing throughput for the partial likelihood kernel with data subset
concurrency (black dots) and with no data subset concurrency (open triangles) for a
problem with 100,032 total sequence patterns and increasing number of equal-sized
data subsets for two gpu device/framework pairs. Left-axis slowdown factor indicates
performance loss relative to the unpartitioned case. Slowdown factors and throughput
in gflops are on a log-scale.

For concurrent computation with the cuda device, throughput is higher than
with the sequential approach at all subset sizes. When there are fewer than 24
subsets we use the streams approach. Throughput with this approach starts to
drop quickly after 17 subsets (corresponding to a subset size of approximately
6,000 patterns). We then note the crossover point at 24 subsets (subset size of
4,168 patterns, and indicated by a dark grey dashed line) where we switch to our
multi-operation kernel approach. This approach exhibits consistent throughput
independent of subset size.

With the opencl solution we use the multi-operation approach for all parti-
tioned cases and note consistent and near best-case throughput, independent of
the number of data subsets.

3.2 Independent Subtree Concurrency Gains

Figure 4 shows the performance improvement associated with concurrent com-
putation of independent subtrees for a problem with 512 patterns. The pectinate
case (open triangle) also represents performance for any tree topology with our
previous solution of serial computation of subtree partial likelihood arrays.



544 D.L. Ayres and M.P. Cummings

Fig. 4. Plots showing throughput for the partial likelihood kernel with subtree concur-
rency for fully balanced trees (black dots), for 1,000 random topology trees (distribution
characterized by box plot), and for pectinate trees (open triangles) for a problem with
512 site patterns and increasing number of tips for two gpu device/framework pairs.
Left-axis speedup factor indicates performance gain relative to the average pectinate
tree throughput. Speedup factors, throughput, and number of tips are on a log-scale.

For both gpus, we observe increasing speedups with tree size for the average
random tree or for fully balanced trees. We also note that for larger trees the
throughput distribution for a random tree is skewed towards the fully balanced
case, which is associated with gpu saturation at these problem sizes. Finally,
we note that pectinate-case performance is approximately twice as fast with the
P5000 gpu under cuda as compared to the R9 Nano gpu using our opencl
implementation. Effective performance towards the pectinate end of the tree
symmetry scale remains highly relevant as phylogenetic inference programs are
optimized such that only a subtree representing the modified portion of the
overall tree is recomputed for each topology change. These subtrees are often
much less balanced than the full tree.

3.3 Application-Level Results

We used our adapted version of mrbayes 3.2.6 to assess application-level per-
formance gains for our concurrency work across a variety of parallel comput-
ing devices. For these benchmarks we used a dataset with 500 taxa and 759
unique site patterns of rbcL, the chloroplast gene encoding the large subunit of
ribulose-1,5-bisphosphate carboxylase/oxygenase, which is derived from a study
of angiosperm relationships [4]. We partitioned the sequence data based on codon
position, resulting in 3 subsets with 253 unique site patterns each, and inferences
were run using the mrbayes default single-precision floating point format.

We chose a dataset with a high number of sequences and with few patterns,
further broken into independent subsets, to best showcase the gains in concur-
rency described in this paper. Previously problems with these characteristics
have been the most challenging for effective parallelization. beagle-enabled



Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 545

Fig. 5. Performance gains for a mrbayes nucleotide-model analysis for various hardware
platforms when using the beagle library, with and without partition and subtree
concurrency. Speedup factors are relative to the total run time when using the standard
mrbayes sse likelihood calculator and are shown on a log-scale.

mrbayes peak performance for datasets with many more patterns and using
higher state-count models are reported elsewhere [1,2].

Speedups for this challenging mrbayes analysis improve as we enable parti-
tion and subtree concurrency, across all hardware resources and corresponding
frameworks (Fig. 5). We observe an average speedup gain of 1.5-fold for subtree
concurrency and 1.4-fold for partition concurrency across all hardware devices.
For the best performing resource (nvidia Quadro P5000 gpu with cuda) we
observe a 1.7-fold gain in speedup when using both concurrency improvements,
ultimately resulting in a 10-fold speedup over the native mrbayes sse run time.

We have attempted but were unable to compare our work to the most recent
proposals from other authors for parallel mrbayes acceleration. For amc3 [3],
which proposes an adaptive multi-gpu approach, we were unable to perform any
analyses with the publicly available code due to execution errors. Additionally,
amc3 is based on mrbayes 3.1.2 which lacks several features and converges more
slowly than version 3.2 [10], making it unsuitable for a direct comparison to our
work. For smc3 [9], which proposes more efficient cpu+gpu parallelism and
reports speedups over previous versions of beagle, neither the source code nor
a binary file appear to be readily available.



546 D.L. Ayres and M.P. Cummings

4 Conclusion

Enabling further concurrency of computation in beagle as described here allows
a wider range of phylogenetic inferences to benefit from parallel computing hard-
ware. Analyses with many small data subsets or with large trees but few site pat-
terns, now benefit from increased throughput on multi and manycore resources.
This work represents an important step in combining the capabilities of increas-
ingly parallel hardware, and the demands of progressively more sophisticated
phylogenetic inference analyses.

Acknowledgments. We thank Marc Suchard, University of California, Los Angeles,
and Andrew Rambaut, University of Edinburgh; Mark Berger, nvidia; and Greg Stoner
and Ben Sander, amd. This work was supported by the National Science Foundation
grant numbers dbi-0755048 and dbi-1356562.

References

1. Ayres, D.L., Cummings, M.P.: Heterogeneous hardware support in BEAGLE, a
high-performance computing library for statistical phylogenetics. In: 2017 46th
International Conference on Parallel Processing Workshops (ICPPW), Bristol, UK
(2017, in press)

2. Ayres, D.L., Darling, A., Zwickl, D.J., Beerli, P., Holder, M.T., Lewis, P.O.,
Huelsenbeck, J.P., Ronquist, F., Swofford, D.L., Cummings, M.P., Rambaut,
A., Suchard, M.A.: BEAGLE: an application programming interface and high-
performance computing library for statistical phylogenetics. Syst. Biol. 61(1), 170–
173 (2012). doi:10.1093/sysbio/syr100

3. Bao, J., Xia, H., Zhou, J., Liu, X., Wang, G.: Efficient implementation of MrBayes
on multi-GPU. Mol. Biol. Evol. 30(6), 1471 (2013). doi:10.1093/molbev/mst043

4. Chase, M.W., Soltis, D.E., Olmstead, R.G., Morgan, D., Les, D.H., Mishler,
B.D., Duvall, M.R., Price, R.A., Hills, H.G., Qiu, Y.L., Plunkett, G.M., Soltis,
P.S., Swensen, S.M., Williams, S.E., Gadek, P.A., Quinn, C.J., Eguiarte, L.E.,
Golenberg, E., Learn Jr., G.H., Graham, S.W., Barrett, S.C.H., Dayanandan, S.,
Albert, V.A.: Phylogenetics of seed plants: an analysis of nucleotide sequences from
the plastid gene rbcL. Ann. Mo. Bot. Gard. 80(3), 528–580 (1993). doi:10.2307/
2399846

5. Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A.: Bayesian phylogenetics
with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012). doi:10.
1093/molbev/mss075

6. Felsenstein, J.: The number of evolutionary trees. Syst. Biol. 27(1), 27–33 (1978).
doi:10.2307/2412810

7. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood
approach. J. Mol. Evol. 17(6), 368–76 (1981). doi:10.1007/BF01734359

8. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W., Gascuel,
O.: New algorithms and methods to estimate maximum-likelihood phylogenies:
assessing the performance of PhyML 3.0. Syst. Biol. 59(3), 307–321 (2010). doi:10.
1093/sysbio/syq010

9. Kuan, L., Pratas, F., Sousa, L., Toms, P.: MrBayes sMC3: accelerating Bayesian
inference of phylogenetic trees. Int. J. High. Perform. C. (2016). doi:10.1177/
1094342016652461

http://dx.doi.org/10.1093/sysbio/syr100
http://dx.doi.org/10.1093/molbev/mst043
http://dx.doi.org/10.2307/2399846
http://dx.doi.org/10.2307/2399846
http://dx.doi.org/10.1093/molbev/mss075
http://dx.doi.org/10.1093/molbev/mss075
http://dx.doi.org/10.2307/2412810
http://dx.doi.org/10.1007/BF01734359
http://dx.doi.org/10.1093/sysbio/syq010
http://dx.doi.org/10.1093/sysbio/syq010
http://dx.doi.org/10.1177/1094342016652461
http://dx.doi.org/10.1177/1094342016652461


Configuring Concurrent Computation of Phylogenetic Partial Likelihoods 547

10. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna,
S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P.: MrBayes 3.2: efficient
Bayesian phylogenetic inference and model choice across a large model space. Syst.
Biol. 61(3), 539–542 (2012). doi:10.1093/sysbio/sys029

11. Zwickl, D.J.: Genetic algorithm approaches for the phylogenetic analysis of large
biological sequence datasets under the maximum likelihood criterion. Ph.D. thesis,
University of Texas, Austin, TX (2006)

http://dx.doi.org/10.1093/sysbio/sys029

	Configuring Concurrent Computation of Phylogenetic Partial Likelihoods: Accelerating Analyses Using the BEAGLE Library
	1 Introduction
	1.1 The BEAGLE Library and API
	1.2 Concurrent Computation: Independent Likelihood Estimates

	2 Methods
	2.1 Benchmarking and Testing
	2.2 Pattern Partition Concurrency
	2.3 Independent Subtree Concurrency
	2.4 Extending Concurrency Gains to OpenCL
	2.5 Memory Transfer Optimizations
	2.6 Combining Pattern Partition and Independent Subtree Concurrency
	2.7 Other Aspects
	2.8 Modifications to MrBayes
	2.9 Library Availability

	3 Results
	3.1 Pattern Partition Concurrency Gains
	3.2 Independent Subtree Concurrency Gains
	3.3 Application-Level Results

	4 Conclusion
	References




